
Micromega Corporation 1 Revised 2006-09-20

Application Note 30

Converting uM-FPU V2
code to uM-FPU V3

This application note describes the procedure for converting uM-FPU V2 code to uM-FPU V3. There are several
changes between V2 and V3, but converting code is very easy. In may ways coding is simpler for the uM-FPU V3
chip since all instructions have a single byte opcodes (so the XOP instruction is no longer required), and many new
instructions are designed to make coding easier and more efficient. In most cases the instruction name in V2 is the
same in V3, but there are a few exceptions that will be listed below.

For a full description of the uM-FPU V3 chip, please refer to the uM-FPU V3 Datasheet, uM-FPU V3 Instruction
Reference, and the reference documentation for each of the supported microcontrollers.

To show an example of converting V2 to V3, we’ll use the following BASIC Stamp code (sample.bs2). Don’t worry
if you’re not familiar with the BASIC Stamp, we’ll only be concerned with the uM-FPU code inside the square
brackets of the SHIFTOUT instructions. Once you’re familiar with conversion process it’s often easier to make all
the changes to a line of code at once, but in this application note we’ll make the changes one step at a time so it’s
easy to follow. We’ll do a direct conversion first, then optimize the code to take advantage of some of the new
features in V3.

Micromega Corporation 2 AN30: Converting uM-FPU V2 code to V3

Micromega Corporation 3 AN30: Converting uM-FPU V2 code to V3

uM-FPU V2 sample code

This sample code takes a diameter value in centimeters, converts it to inches and calculates circumference and area.

Reset:
 DEBUG CR, "Conversion Example"
 DEBUG CR, "------------------", CR

 GOSUB Fpu_Reset ' reset the FPU hardware
 IF status <> SyncChar THEN
 DEBUG "uM-FPU not detected."
 END
 ELSE
 GOSUB Print_Version ' display the uM-FPU version number
 DEBUG CR
 ENDIF

 ' Load constants for later use
 SHIFTOUT FpuOut, FpuClk, MSBFIRST,

[Pi, XOP, LOADPI, FSET]
 SHIFTOUT FpuOut, FpuClk, MSBFIRST,

[F2_0, LOADBYTE, 2, FSET]
 SHIFTOUT FpuOut, FpuClk, MSBFIRST,

[F2_54, ATOF, "2.54", 0, FSET]

Main:
 diameterCm = 25
 DEBUG CR, "Diameter (cm): ", DEC diameterCm

 ' diameterIn = diameterCm / 2.54

 SHIFTOUT FpuOut, FpuClk, MSBFIRST,
[DiameterIn, LOADBYTE, diameterCm, FSET, FDIV+F2_54]

 DEBUG CR, "Diameter (in.): "
 GOSUB Print_Float

 ' circumference = diameter * pi

 SHIFTOUT FpuOut, FpuClk, MSBFIRST,
[Circumference, FSET+DiameterIn, FMUL+Pi]

 DEBUG CR, "Circumference (in.): "
 GOSUB Print_Float

 ' area = (diameter / 2)^2 * pi

 SHIFTOUT FpuOut, FpuClk, MSBFIRST,
[Area, FSET+DiameterIn, FDIV+F2_0, FMUL+Area, FMUL+Pi]

 DEBUG CR, "Area (sq.in.): "
 GOSUB Print_Float

 DEBUG CR, CR, "Done.", CR ' end of program
 END

Micromega Corporation 2 AN30: Converting uM-FPU V2 code to V3

Micromega Corporation 3 AN30: Converting uM-FPU V2 code to V3

Micromega Corporation 4 AN30: Converting uM-FPU V2 code to V3

Steps required to convert code to uM-FPU V3

1) Remove XOP prefix
In V2, some instructions required an XOP prefix before the opcode (e.g. XOP LOADPI). In V3, all instructions have
a single byte opcode so XOP is no longer required. Remove all XOP opcodes.

Change: [Pi, XOP, LOADPI, FSET]
to: [Pi, LOADPI, FSET]

2) Replace opcode+register with opcode, register
In V2, the SELECTA, SELECTB, FWRITEA, FWRITEB, FREAD, FSET, FADD, FSUB, FMUL, FDIV, LSET,
LADD, LSUB, LMUL, LDIV, LWRITEA, LWRITEB, LREAD, and LUDIV instructions have the register number of
the second operand stored in the lower four bits of the opcode. As a result, these instructions are generally written as
opcode+register (e.g. FMUL+Pi). In V3, the second operand is not stored in the opcode, but is specified by a byte
following the opcode (e.g. FMUL, Pi).

Change: [DiameterIn, LOADBYTE, diameterCm, FSET, FDIV+F2_54]
to: [DiameterIn, LOADBYTE, diameterCm, FSET, FDIV, F2_54]

Change: [Circumference, FSET+DiameterIn, FMUL+Pi]
to: [Circumference, FSET, DiameterIn, FMUL, Pi]

Change: [Area, FSET, DiameterIn, FDIV+F2_0, FMUL+Area, FMUL+Pi]
to: [Area, FSET, DiameterIn, FDIV, F2_0, FMUL, Area, FMUL, Pi]

3) Add SELECTA opcode where register shortcut used
In V2, the SELECTA opcode is 00, so SELECTA+N is the same as N itself. As a result, the SELECTA opcode is
often not specified in V2 code, just the register. In V3, the SELECTA opcode is separate from the register value so it
must be specified.

Change: [Pi, LOADPI, FSET]
to: [SELECTA, Pi, LOADPI, FSET]

Change: [F2_0, LOADBYTE, 2, FSET]
to: [SELECTA, F2_0, LOADBYTE, 2, FSET]

Change: [F2_54, ATOF, "2.54", 0, FSET]
to: [SELECTA, F2_54, ATOF, "2.54", 0, FSET]

Change: [DiameterIn, LOADBYTE, diameterCm, FSET, FDIV, F2_54]
to: [SELECTA, DiameterIn, LOADBYTE, diameterCm, FSET, FDIV, F2_54]

Change: [Circumference, FSET, DiameterIn, FMUL, Pi]
to: [SELECTA, Circumference, FSET, DiameterIn, FMUL, Pi]

Change: [Area, FSET, DiameterIn, FDIV, F2_0, FMUL, Area, FMUL, Pi]
to: [SELECTA, Area, FSET, DiameterIn, FDIV, F2_0, FMUL, Area, FMUL, Pi]

4) Add Register 0 value or replace opcode
In V2, if the register value is 0, opcode+reg is the same as the opcode by itself. This shortcut is often used in V2

Micromega Corporation 3 AN30: Converting uM-FPU V2 code to V3

Micromega Corporation 4 AN30: Converting uM-FPU V2 code to V3

Micromega Corporation 5 AN30: Converting uM-FPU V2 code to V3

code. In V3, the register is specified as a separate byte following the opcode, but all of the basic operators also have
a register 0 form of the instruction that doesn’t require the extra byte (e.g. instead of FADD,0 use FADD0).

Change: [SELECTA, Pi, LOADPI, FSET]
to: [SELECTA, Pi, LOADPI, FSET0]

Change: [SELECTA, F2_0, LOADBYTE, 2, FSET]
to: [SELECTA, F2_0, LOADBYTE, 2, FSET0]

Change: [SELECTA, F2_54, ATOF, "2.54", 0, FSET]
to: [SELECTA, F2_54, ATOF, "2.54", 0, FSET0]

Change: [SELECTA, DiameterIn, LOADBYTE, diameterCm, FSET, FDIV, F2_54]
to: [SELECTA, DiameterIn, LOADBYTE, diameterCm, FSET0, FDIV, F2_54]

5) Use immediate mode instructions
In V3, all of the basic operators also have an immediate mode of the instruction that can be used for small integer
values (-128 to 127). This is very common (e.g. x = x + 5 / 10) and can make the code simpler and more efficient.

Remove: SHIFTOUT FpuOut, FpuClk, MSBFIRST,
 [SELECTA, F2_0, LOADBYTE, 2, FSET0]
(constant 2.0 no longer required)

Change: [SELECTA, Area, FSET, DiameterIn, FDIV, F2_0, FMUL, Area, FMUL, Pi]
to: [SELECTA, Area, FSET, DiameterIn, FDIVI, 2, FMUL, Area, FMUL, Pi]

Change: [SELECTA, DiameterIn, LOADBYTE, diameterCm, FSET, FDIV, F2_54]
to: [SELECTA, DiameterIn, FSETI, diameterCm, FDIV, F2_54]

6) Use FCNV instruction
Many common conversions are provided by the FCNV instruction in V3. In this example centimeters are being
converted to inches which is FCNV, 5 (see uM-FPU V3 Instruction Reference for a full list of conversions).

Remove: SHIFTOUT FpuOut, FpuClk, MSBFIRST,
 [F2_54, ATOF, "2.54", 0, FSET]
(constant 2.54 no longer required)

Change: [SELECTA, DiameterIn, FSETI, diameterCm, FDIV, F2_54]
to: [SELECTA, DiameterIn, FSETI, diameterCm, FCNV, 5]

Micromega Corporation 4 AN30: Converting uM-FPU V2 code to V3

Micromega Corporation 5 AN30: Converting uM-FPU V2 code to V3

Micromega Corporation 6 AN30: Converting uM-FPU V2 code to V3

uM-FPU V3 sample code

The following code shows the results of the conversion to uM-FPU V3 code.

Reset:
 DEBUG CR, "Conversion Example"
 DEBUG CR, "------------------", CR

 GOSUB Fpu_Reset ' reset the FPU hardware
 IF status <> SyncChar THEN
 DEBUG "uM-FPU not detected."
 END
 ELSE
 GOSUB Print_Version ' display the uM-FPU version number
 DEBUG CR
 ENDIF

 ' Load constant for later use
 SHIFTOUT FpuOut, FpuClk, MSBFIRST, [SELECTA, Pi, LOADPI, FSET0]

'==
'-------------------- main routine --
'==

Main:
 diameterCm = 25
 DEBUG CR, "Diameter (cm): ", DEC diameterCm

 '------------------------------
 ' convert inches to centimeters
 '------------------------------
 SHIFTOUT FpuOut, FpuClk, MSBFIRST,

[SELECTA, DiameterIn, FSETI, diameterCm, FCNV, 5]
 DEBUG CR, "Diameter (in.): "
 GOSUB Print_Float

 '------------------------------
 ' circumference = diameter * pi
 '------------------------------
 SHIFTOUT FpuOut, FpuClk, MSBFIRST,

[SELECTA, Circumference, FSET, DiameterIn, FMUL, Pi]
 DEBUG CR, "Circumference (in.): "
 GOSUB Print_Float

 '----------------------------
 'area = (diameter / 2)^2 * pi
 '----------------------------
 SHIFTOUT FpuOut, FpuClk, MSBFIRST,

[SELECTA, Area, FSET, DiameterIn, FDIVI, 2, FMUL, Area, FMUL, Pi]
 DEBUG CR, "Area (sq.in.): "
 GOSUB Print_Float

 DEBUG CR, CR, "Done.", CR 'end of program
 END

Micromega Corporation 5 AN30: Converting uM-FPU V2 code to V3

Micromega Corporation 6 AN30: Converting uM-FPU V2 code to V3

Micromega Corporation 7 AN30: Converting uM-FPU V2 code to V3

Summary of Conversion Steps (by Task)
This summary includes some conversion steps not shown in the previous example.

• Remove XOP prefix (e.g. XOP,ATAN2 to ATAN2)
• Replace opcode+register with opcode, register (e.g. FADD+N to FADD,N)
• Add SELECTA opcode where register shortcut used (e.g. XVAL to SELECTA,XVAL)
• Add Register 0 value or replace opcode (e.g. FSET to FSET0)
• Use immediate mode instructions (e.g. LOADBYTE,5,FDIV to FDIVI,5)
• LOADONE has been removed. Use immediate opcodes (e.g. FSUB,1)
• Use new features in uM-FPU V3

Summary of Conversion Steps (by Opcode)

uM-FPU V2 uM-FPU V3 Action Required

SELECTB
FWRITEB
FLOAT
FIX
XOP

FUNCTION

IF_FSTATUSA

IF_FSTATUSB
IF_FCOMPARE
IF_LSTATUSA
IF_LSTATUSB
IF_LCOMPARE
IF_LUCOMPARE

IF_LTST
READBYTE
READLONG
LINCA
LINCB
LDECA
LDECB

LWRITEB

FRACTION

LOADZERO

LOADONE

removed
removed

stores result in register A
stores result in register A

not required
renamed

changed

(as above)
(as above)
(as above)
(as above)
(as above)
(as above)
(as above)
renamed
renamed
changed
changed
changed
changed
removed
renamed
removed

removed

change instruction to specify the operand
replace with FWRITE, or FWRITE0
add FSET0 after FLOAT
add LSET0 after FLOAT
remove
replace with FCALL, nested calls now allowed
change conditional assembly to use BRA, JMP, GOTO
instructions
(as above)
(as above)
(as above)
(as above)
(as above)
(as above)
(as above)
replace with LREADBYTE
replace with LREADWORD
replace with LINC
replace with LINC
replace with LDEC
replace with LDEC
replace with LWRITE or LWRITE0
replace with FRAC
replace with CLR, CLRA, or CLR0
replace with immediate value instruction (e.g. FSETI,1)
or LOADBYTE,1

Micromega Corporation 6 AN30: Converting uM-FPU V2 code to V3

Micromega Corporation 7 AN30: Converting uM-FPU V2 code to V3

New Features in uM-FPU V3 to Consider Using
• 128 32-bit general registers
• 256 32-bit EEPROM register slots
• Register X opcodes for rapidly reading, writing and accessing sequential registers with auto-increment.
• The FSUBR and FDIVR instructions for reverse operations.
• The FMOD instruction for floating point mod
• The FIXR instruction for round and fix (FIX is truncate and fix).
• The MOP instructions for matrix and vector operations.
• The LOADCON and LONGCON instructions for loading common constants
• The FCNV instruction for converting units
• The FMAC and FMSC for multiply and accumulate
• Two Analog to Digital channels
• Elapsed time counter
• External event counter
• String handling instructions
• user-defined functions stored in Flash or EEPROM
• expanded user-defined function space and function size
• enhanced conditional execution in user-defined functions
• forward and reverse table lookup in user-defined functions

Further Information
Check the Micromega website at www.micromegacorp.com for up-to-date information.

